Long term plan: Big Questions / Core Concepts

Oasis Sholing Science – Updated Curriculum

We are currently at the initial stages of the launch and implementation of our new science curriculum. In 2023-2024 students in year 7 & 8 will study this new curriculum. The curriculum will be developed over the coming years gradually replacing the old curriculum.

Big Questions

We have structured our curriculum around the most significant concepts in science and mapped students' development of these concepts through lesson sequences and topics. To give our curriculum a deeper structure when designing it we have thought about how students knowledge of those concepts enables them to answer our "big questions" in greater depth. This enables our teachers to think about both deepening students knowledge of concepts and developing meaningful connections between those key concepts. Our big questions have been developed from the ASE and Royal Societies project and are closely linked to the idea of the "big ideas" of science.

Biology	Chemistry (& Earth Science)	Physics
What are living things made of? Topics: B1, B3, B11, B15, B16,	What are substances? Topics: C1, C2, C12, C14, C15, C21, C22	What is matter? Topics: (C1) P3, P17, P18
How do organisms grow and	What gives substances their properties?	Why do things move and change?
reproduce?	Topics C2, C3, C16, C17, C21	Topics: P1, P5, P7, P13, P14, P19, P20
Topics: B2, B6, B9, B20 Why do organisms depend on each other and their environment?	What is chemical change? Topics C4, C6, C9, C10, C13, C18, C19, C20	How does information and energy spread? Topics: P2, P3, P6, P8, P10, P21
Topics: B8, B10, B13, B18, B21	How does chemistry affect the Earth?	Topics: P9, P11, P12, P15, P16, P22
Why are living things so diverse? Topics B4, B7, B14, B20	C7, C10, C11 What is the Earth made of and how is it	Where are we in space? Topics: P4
What keeps organisms healthy?	changing?	
Topics: B5, B12, B17, B19	C5, C7, C8, C11, C23, C24	

The national curriculum, and AQA exam specifications, for science set out a body of target knowledge which is very broad. Our curriculum aims to help students scaffold this breadth of knowledge by structuring KS4 content around a firm foundational understanding of how our core concepts provide meaningful answers to our big questions. Our KS3 (Y7-Y9) establishes a deep understanding of each question and our KS4 enriches these answers using the breadth and detail of the AQA exam specification. We aim for students to leave school having retained the ability to explain and expand the following answers to our questions long after their GCSE exams have been passed. We have written end point answers to each big question, this is what we want all our students to be able to know and answer about that big question when they leave Oasis Sholing. For each unit end points are identified, this is what we want our students to have learnt about that big question by the end of that specific unit building upon their prior knowledge. End points and further information can be found in our departments statement of intent document.

Long term plan: Principles of Progression

Principles of Progression:

Our curriculum is designed to ensure that our students are knowledgeable. Our curriculum is well-sequenced around a series of big questions starting from students' own experience of the world and moving towards a more developed scientific understanding. Over their science education, students will build up their knowledge of the most significant concepts in biology, chemistry, and physics.

- Secure Substantive Knowledge: we believe that if they have secure substantive knowledge, they will feel confident in explaining the key scientific principles that govern everything that occurs within our universe. Concepts are revisited throughout their curriculum to ensure that students engage with the most important concepts in a range of applications and contexts.
- Experience of phenomena: we feel it is important that students experience many of the phenomena they are studying. The tacit knowledge they gain strengthens and reinforces their declarative knowledge as they move through the curriculum. Experiencing phenomena also provides opportunities for students to challenge the existing models by making and justifying predictions.
- Develop Disciplinary Knowledge: we also want to ensure that students have mastered the disciplinary knowledge they understand and have some experience of what it means to be 'a scientist'. We feel it is important that this is taught alongside the substantive knowledge so that students understand how substantive scientific knowledge has been developed over time.
- Investigative and practical skills: structured into our units are opportunities for students to carry out investigative work into the concepts they are studying. Students complete work accurately and precisely in order to develop their procedural knowledge of the scientific method, giving deeper meaning to their understanding and providing students with the foundations to study science at a higher level.
- Secure subject specific literacy: We want to ensure that students are equipped with a wide range of scientific vocabulary, an understanding of how scientific ideas are presented and communicated and an opportunity to engage in discussions within the curriculum and at home so that they are able to communicate their ideas effectively.
- Link the 'Big Questions' in science: over their science education, students will build on this knowledge in order to gain a deeper understanding of the big, overarching ideas in biology, chemistry and physics. From understanding that all material in the universe is made of very small particles, to the concept that energy cannot be created or destroyed to the key ethical arguments governing science; knowledge is constructed and deepened from the foundations up.
- Concrete examples and real life contexts: students have the opportunity to practise application of knowledge to meaningful real life contexts so that we ensure it is flexible and that they can apply it to a range of different situations & scenarios both within the classroom and more importantly, their real lives.

Disciplinary Knowledge

Embedded into our curriculum plans are explicit opportunities for students to develop their disciplinary knowledge of science. We have sequenced how students develop their sense of how the three disciplines of science work around discipline specific concepts. These concepts and end points are based upon those suggested by the royal society of chemistry, royal society of biology and IOP's work on developing curriculum frameworks. We have also referenced relevant procedures and techniques in our sequencing as set out in the national curriculum and GCSE specifications. Disciplinary knowledge end points for each of the three sciences and 'how science works' can be found in our statement of intent.

Our curriculum is designed to ensure students have the disciplinary knowledge to be 'good scientists'. This includes:

- Knowledge of methods for answering scientific questions: a secure knowledge of the different ways that scientists investigate scientific questions so that students will be able to decide on appropriate methods of investigation that will enable them to test predictions and evaluate scientific theories for themselves.
- Knowledge of apparatus and techniques: students will have experience of using a range of different pieces of apparatus and techniques so that they can decide on the most appropriate and evaluate their use in different scenarios in terms of safety, accuracy, precision, and errors.
- Analyse data: students should be able to analyse data gathered or shared with them using a range of mathematical techniques, tables, and graphs. They should be able to discuss repeatability and reproducibility of findings and potential sources of error and bias so that they are able to discern between fact and error and justify and communicate their conclusions effectively.
- > Apply mathematical concepts: students will be able to apply mathematical concepts, conventions, and skills to identify patterns and describe phenomenon quantitatively.
- **Use standardised units**: students will be able to use standardised units effectively and perform appropriate calculations.
- Respectful conversation: the curriculum will create a space for students to engage in respectful conversation around challenging topics which enables them to develop their understanding of the complexity of decisions made within the field of science and how scientific advances have had an impact on the future of our planet.
- **Continuously evolving**: students will understand that scientific theories, laws, models and methods change over time to take into account new evidence.
- Impact of science on us, our local and global communities: students should be able to explain the contribution of science to our past and it's role in our future. They should be able to use their knowledge of science to make well-informed decisions that impact themselves and their local and global community and be able to communicate and justify these to those around them.

Autu	mn 1 Autumn 2		2	Sprin	g 1	Spri	ng 2	2 Sumr		er 1 Summer 2		er 2			
	Year seven														
C1		C2	С	3 C4	B1	B2	В3	E	34	Р	1	P2	F	93	M1
Year eight															
P4	Р5		P6	P7	C5 a	C6	C7	C8	C9	C5 b	B5	B6	B7	B8	В9

Year 7 Long term plan: Chemistry

Brief overview

Year 7 begins by giving students a observable characteristic used to identify a substance (melting point behaviour) and an experience of observing the difference between a substance and a mixture. This distinction is built up by working through separation techniques first encountered in KS2. Students will learn that substances (not materials) can exist in all three states of matter and how this relates to the particle model. Once students have built a sense of concept for "substance" we look at some different ways substances are classified by their structure and properties. C2 also introduces the representation of substances using formula. C3 develops the idea that substances have distinct properties by looking at solubility and introducing students to how properties can be quantified and represented on graphs to explore trends and make predictions. C4 builds up students concept of "chemical change" giving students experience of thinking using the chemistry "triplet" – observations, representations and sub microscopic models.

Unit	C1	C2	С3	C4
Unit title	Substances and mixtures	Substances	Solubility	Introducing chemical change
Big question/ core concept	What are substances? Core concept: Substance	What are substances? Core concept: substance What gives substances their properties? Core concept: Bonding (holding power)	What are substances? Core concept; substance What gives substances their properties? Core concept: bonding (holding power)	What is chemical change? Core concept: chemical change
Relevant end points	 Most materials are mixtures. Materials made of single substance start and finish melting at the same temperature. Every substance has a melting point 	 Substances can be classified into different groups by their properties and structure Substances are made of atoms Substances melting points depend on their sub-microscopic structure 	 Every substance has a measurable solubility in water. (This is distinct property of a substance) 	 Atoms are rearranged to form new substances. New substances formed in a chemical change have new properties
Core substantive knowledge	 Substances can exist in three states of matter. Mixtures can be separated into substances. Different techniques separate different types of mixture Solutions are clear mixtures of a solvent and solute Particle model for liquids solids and gases Brownian motion 	 Substances are made of atoms. Elements can be metals of non-metals Metals have giant substances so have high melting points Non metals have molecular structures so have low mpts. Substances can be compounds or elements Chemical reactions can rearrange atoms to form new substances 	 Properties can be measured and given numerical values. Solubility of a substance depends on temperature. Dissolving happens without stirring. Dissolving is the result of the intrinsic motion of particles in the liquid state. 	 Word equations. Symbol equations. Particle representations of symbol equations Multipliers (molecular substances) State symbols. Conservation of atoms/mass in a chemical change. Precipitation (if insoluble products formed)
Core disciplinary knowledge	 Simple procedural processes for separation techniques. Particle model (as model of the sub macroscopic) Investigation: Brownian motion as observational evidence of particle model 	 Chemicals use symbols and formula to represent substances Chemists classify substances into groups based on properties and structure. Chemists classify changes as physical or chemical 	 Chemists quantify solubility mathematically to show trends. Graphs are used to analyse trends mathematically and make predictions How to interpret and analyse graphs That chemists make use measurement techniques 	 Chemists link the representational, sub microscopic model and observations. Reinforcing: Representational Sub microscopic Models Observations (qualitative)

Year 7 Long term plan: Biology

Brief overview

Year 7 biology begins by revisiting students knoweldge of organisms as "living things" which show the "characteristics of living organisms" before using extensive microscope work to establish a more meaningful criteria for life – being made of cells. Students look at classification of animal cells and plant cells (including why this can be challenging) and the basic structures of these cell types. They idea of the cytoplasm and cell membrane are developed by linking to students knoweldge of the particle model to build an explanation for diffusion into and out of cells. Unit B3 develops these ideas to look at how organ systems in the human body work together to provide the substances needed for respiration to every cell. Units B2 uses the family to build a concept of genetic inheritance and the genome, including how genetics and the environment shape similarities and differences in the family. B4 looks are variation within species and how species has changed over time – including how biologists gather and interpret evidence. B4 includes students first longer form investigation at KS3.

Unit	B1	B2	B3	B4
Unit title	Cells the unit of life	Inheritance and the genome	From cells to organ systems	Variation through time
Big question/ core concept	What are living things made of Core concept: cells	How do organisms grow and reproduce? Core concept: inheritance	What are living things made of Core concept: cells	Why are living things so diverse? Core concept: evolution
Relevant end points	 All life is made of cells Microscopes can be used to observe cells Cells are dynamic and exchange substances with their surroundings 	 All organisms in a species show variation Variation can be caused by genetic information, the environment or both Our genome is inherited from our parents (50% from each) 	 Multicellular organisms contain organ systems. Organ systems have a specific function Organ systems work together to maintain the conditions of life for all cells 	 Members of a species can reproduce to fertile young Genetic inheritance only occurs across generations within a species Species have gradually changed over billions of years
Core substantive knowledge	 Seven characteristics of living organisms Typical structures of animal and plant cells. Basic functions of sub-cellular structures. Cytoplasm is a dynamic fluid (particle model) Diffusion – particle model explanation Structure of cell membrane enables transport of small molecles. 	 Genome is all the genetic information in an organism. Role of environment and genetic inheritance in explaining similarity and difference in families. Genome is stored on DNA in the nucleus of (most) body cells. DNA is organised into chromosomes DNA is a class of chemical and can be extracted 	 Levels of organisation in animals and plants. Mechanism of breathing and adaptions for gas exchange Structure of digestive system and function of small intestine Role of enzymes in producing small nutrients which can be absorbed Role of circulatory system Role of muscular skeletal system 	 Variation can be continuous or discrete. Definition of a species Scientists use fossil evidence to study the past Most fossils are mineralised remains of hard body parts The fossil record is incomplete
Core disciplinary knowledge	 Procedures for preparing and viewing tissue slides. classification into animal and plant cells. Models can be used to explain processes (diffusion) Biologists study life at the level of cells and biological molecules 	 Investigation: how to follow a written method. How evidence was used to establish a model of DNA. There is a cross over between the study of chemistry and biology when looking at biological molecules. 	 Dissection provides qualitative evidence of the internal structure of organisms. Models can help us explain the functioning of biological systems. Biologists have to source organisms for dissection ethnically. Biologists can study live at different levels of organisation 	 Collection of large scale quantitative data for analysis. Difference between correlation and cause Analysis: Conventions for producing scatter graphs. Collection of data (fossils) to look for qualitative changes.

Year 7 Long term plan: Physics

Brief overview

Year 7 Physics begins by studying two of our most important core concepts – force and energy. The unit starts by checking KS2 knoweldge and distinguishing force from other concepts related to motion. The early lessons on force are designed to displace commons around force and motion. This is done by exploring equilibrium situations between weight and the normal contact force before studying the effect of friction in some depth. The second half of P1 develops students concept of energy as the "cost" of getting things done before exploring the different energy stores and simple transfers qualitatively. P2 gives students a deeper understanding of two "waves" (term not introduced) that they will have encountered at KS2 – sound and light. The unit explores how both transmit information from source to observer and dissipate (spread out) with distance from a source. Our final unit of Y7 looks at temperature through students knowledge of the particle model (from C1) and use it to explain the idea of heating and thermal stores of energy.

Unit	P1	P2	P3
Unit title	Force and energy	Sound and Light	Heating and cooling
Big question/ core concept	Why do things move and change? Core concepts: force and energy	How does information and energy spread? Core concept: waves (term not introduced in unit)	What is matter? Core concept(s): matter and energy
Relevant end points	 Objects at "equilibrium" the forces on it are balanced Unbalanced forces cause a change in motion Friction is a force that acts against motion. Energy stores can be used to predict how much a system can change. 	 Sound and light transfer information from source to observer. Both sound and light radiate from a source and become more spread out with distance. 	 (Particle model of) temperature (Particle model of) Thermal stores of energy
Core substantive knowledge	 Forces are represented with arrows and measured in newtons Difference between force and (momentum) Weight is a force that is pulling down The normal contact force keeps objects in equilibrium if they are resting on a solid surface. An object at equilibrium can be moving or stationary The force of friction acts against motion Fuels are "used up" but energy is transferred Key energy stores and describing transfers 	 Vibrating sources produce sound. Sound travels through a medium as vibrations Sound travels best through mediums in their solid or liquid states. Light can reflect or "scatter" off surfaces. The passive eye model of sight Sun light as "white light" and how colours of light combine. Why objects appear coloured under different sources of light. 	 What temperature is. Thermal expansion (and how a thermometer works) Heating as an energy transfer Dissipation of heat Thermal conduction Insulators
Core disciplinary knowledge	 Representation in physics (force diagrams) Investigations: controlling variables Analysis of data to draw conclusions. Physics uses mathematical models to explain changes. Forces are an explanation which applies to a very wide range of situations Energy is a model not an explanation. 	 Measurement: using a prism to observe the spectrum of light (evidence of "white" light). Procedures: how to use a ray box to investigate light Measurement: observations of objects under different colours as evidence of how we perceive colour using information from light. 	 How a thermometer measures temperature. Measurement: how to measure temperature. Analysis: and interpretation of line graphs

Year 7 Long term plan: "Materials science"

Brief overview

After their end of year 7 exams students study a short unit on materials science. This aims to reinforce students knoweldge of our big question "what are substances" by using the concept of "substance" to inform students understanding of what a "material" is. It also gives students an opportunity to study the uses science is put to

Unit	M1
Unit title	Substances and mixtures
Big question/ core concept	What are substances? Core concept: Substance
Relevant end points	 Most materials are mixtures. Materials made of single substance start and finish melting at the same temperature. Substances rather than materials have clearly defined "states of matter"
Core substantive knowledge	 Materials are classified based on their properties. Materials are usually made of more then one substance. Composite materials are made of more than one material. Properties of ceramics, metals and polymers Gels and pastes are a mixture of substances in solid and liquid states.
Core disciplinary knowledge	 Materials science is an "inter-disciplinary" field of science. Chemists classification of states of matter applies to substances rather than materials Materials scientists have their own forms of classification based on what they are studying

Long term plan: Year 7 breakdown by lesson

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
 L1. Introduction to science L2. KS2 Chemistry & pre-request knoweldge test. (optional) Topic C1: What are substances and mixtures L1. What are substances? L2 Are all materials pure substances? L3. Do things disappear when they dissolve? L4. Can we prove if an ink is pure? L5. What is melting? L6. What is boiling? L7. How does a filter work? L8. Can we prove gases are made of particles? L9. Can we separate the salt from the sea? L10. Can we separate the cherry from the cherry coke? L11. Cherry coke practical (optional) L12. End of topic test C1 L13 Master and feedback Topic C2: What are substances? L1. What are elements? L2. Why do metals have high melting points? L3. Why are there so many substances? L4. What is the difference between a compound and a mixture? L5. How do chemists represent substances? 	C2 continued L6. What do chemical formulas represent? L7. How is chemical change different from physical change? L8. How do chemical changes form new substances? L9. EOTT What are substances. L10. Feedback and mastery Topic C3: Solubility L1. Why do some substances dissolve L2. How can we increase solubility? L3. How do we use graphs of solubility (optional) Topic C4: What are chemical reactions L1. How do we represent chemical change? L2. How can equations help us observe reactions? L3. What do symbol equations represent? L4. What happens to mass in a chemical equation? (optional) L5. How does the solubility of substances effect our observations? L6. What happens to mass in a reaction (Pt2 if complete option lesson). L7. EOTT C4 (or optional OCL assessment point). L8. Feedback and mastery Topic B1: Cells – the unit of life L1. What makes something alive L2. What are animals made of? L3. What are plants made of? L4. What are plants made of?	Mid year OCL assessment (optional) B1 continued. L6. How many types of cell are there? L7. How does a cell get what it needs to stay alive? L8. How do substances move in and out of a cell? Topic B2: Inheritance and the genome L1. What makes us all unique? L2. What characteristics can be inherited L3. Where is our genome stored? L4. Can we see the DNA in fruit? L5. EOTT B1 & B2 L6. Mastery and feedback Topic B3: From cells to organ systems L1. What are we made of? L2. What are other organisms made of? L3. How does our digestive system work? L4. How does our digestive system keep us alive? L5. How do substances get around the body?	Topic B3 continued. L8. Why do we need a circulatory system? L9 Are our bones made of cells? L10 How do we move? L11 (Optional) Rat dissection L11. EOTT B3 L12. Mastery and feedback Topic B4: variation. L1. What is a species? L2. Investigating variation Pt 1 L3. Investigating variation Pt 2 L4. What are fossils? L5 What can the fossil record show us? L6. EOTT Variation L7. Mastery and feedback Topic P1: Forces & energy L1. What are forces? L2. How do we represent forces? L3. Why are some objects stationary? L4. When do objects change their motion? L5. Can we predict how an objects motion will change?	P1 continued L6. Why do things stop moving? L7. Can we reduce friction? L8. Investigating friction Pt 1 L9 Investigating friction Pt 2 L10. What is the cost of moving? L11. What are the different stores of energy? L12. What happens to energy when forces move an object L13. Why do moving objects heat up? L14. Describing energy transfers (optional) L15. EOTT P1 L16. Mastery and feedback Topic P2: Sound and light L1. What is sound L2. Why can we hear better under water? L3. Why do we get shadows? L4. How does light fill a room? L5. Why are some objects reflective? L6. How do we "see" objects	 P2 continued L7. How do we get different colours of light? L8. What colour is sun light? L9. Why do some objects appear black? L10. Why do some objects appear coloured? L11. EOTT Sound and Light L12 Mastery & feedback End of year OCL assessment Topic P3: Heating and cooling L1. What is temperature? L2. How do thermometers work? L3. How do objects cool? L4. Why are some materials good conductors? L5. What is the difference between temperature and energy? L6. (optional) Are some materials better at storing energy. Topic: Material science L1. (optional) materials and substances L2. Composite materials L3. Polymers, ceramics and metals L4 (optional) Gels and paste L5 (optional) investigating properties of polymers L6 (optional) investigating properties of polymers pt2

Year 8 Long term plan: Physics

Brief overview

We start by introducing one of our big questions (space) that students will not have covered since KS3. This first topic uses prerequisite knowledge of forces and radiation to build a sense of where we are in the universe and how the motion of bodies in space shapes our perspective. The remaining topics develop big questions that were first encountered in Y7. "Why do things move and change" I being covered in both P5 and P7. P5 looking first at ideas around motion and distance time graphs before P7 looks at explaining common scenarios using force such a surface supporting a weight; extension of a springy material and levers. Unit P6 returns to the idea of the ray model of light deepening students understanding of how light radiates and exploring the different ways "images" can be produced. Students also learn how to use ray boxes and lasers to investigate images, reflection and refraction.

Unit	P4	P5	P6	P7
Unit title	Where are we in space?	Moving by Force	How do we make images	More on Forces
Big question/ core concept	Where are we in space? Core concepts: Space	Why do things move and change? Core concepts: force and energy	How does information and energy spread? Core concept: waves	Why do things move and change? Core concepts: force and energy
Relevant end points	 The Earth is a sphere and we live on its surface Gravity exerts a pulling force towards the centre of an object and is dependent on its mass. The orbits of planets are caused by gravity 	 Distance = speed x time Distance time graphs can be used to represent the motion of an object Acceleration is a how quickly the speed of an object is changing. 	 Light rays are imaginary lines which show the path and direction light can travel along Light can produces 'images' of real objects in different ways 	 Weight (N) = mass x strength of gravity Simple machines (levers) can increase the turning effect of a force The extension of a spring is proportional to the force exerted on it.
Core substantive knowledge	 Stars are nuclear stores of energy that radiate light Night and day are caused by the rotation of the earth Seasons are caused by changes to the "tilt" of the earth as it orbits the sun The solar system is a tiny part of a much larger galaxy. The universe is all of space and everything in it 	 A horizontal line on a D-T graph shows an object is stationary A straight line sloping shows an object moving at a constant speed A curved line shows an object that is accelerating Drag is the result of particles exerting a pushing force on an object 	 Why a pin hole camera (or eye) produces images which are upside down and back to front. The law of reflection (angle of incidence = angle of reflection. Light refracts (changes direction) Lenses can refract light and produce an image 	 Mass is a measure of the "amount" of matter in a material. Units: Kg. The force needed to support an object is equal to its weight Turning force = force x distance from pivot Elastic objects can return to its original size and shape after being distorted. Surfaces produce a "contact force" because they become squashed at a microscopic level
Core disciplinary knowledge	 Gravity is an example of a powerful physics explanation in that applies in all known situations everywhere in the universe 	 Mathematical formulation: many ides in physics can be expressed as mathematical equations Analysis: the conventions for representing and interpreting movement using DT graphs 	 Light rays are a way of modelling the behaviour of light Mathematical formulation: many ideas in physics can be expressed as mathematical equations Procedures: How to use lasers and ray boxes to investigate light. Independent and dependent variables in investigations & reproducible experiments 	 Graphs allow us to spot patterns and analyse data A straight line on graph shows the change in the dependent variable is proportional to the change in the independent variable. A curved line shows the change in the dependent variable is not proportional to the change in the dependent variable is not proportional to the change in the independent variable is not proportional to the change in the independent variable is not proportional to the change in the independent variable

Year 8 Long term plan: Chemistry

Brief overview`

Year 8 develops the fundamentals established in Y7 to explore how chemistry shapes our planet. We start and finish with unit C5 (part A and B) which begins with looking the structure of the earth (or geosphere) and how it has changed over geological time scales (dynamic earth). Students look at minerals as an example of substances with a "giant" crystal forming structure. This unit is broken into two sections which bookend Y8 chemistry. Between parts A and B of unit C5 students revisit chemical change to look at types of chemical reaction – including neutralisation and other reactions of acids in C9. We then introduce two other important parts of the earth, its hydrosphere (liquid water) and atmosphere, before concluding by looking at physical weathering, the role of acid rain in chemical weathering and sedimentary rocks. C8 revisits Y7 work on energy transfers in the context of chemical reactions.

Unit	C5 (Parts a & b)	C6	С7	C8	С9
Unit titlo	How is our planet changing?	What types of chemical reaction	What are the atmosphere and	How is energy transferred in	How do acids react?
onn nne		are there?	hydrosphere?	chemical reactions?	
Big	What is the Earth made of and	What is chemical change?	How does chemistry effect our	What is chemical change?	What is chemical change?
question/	how is it changing?	Core concepts: chemical change	world	Core concept: chemical change	Core concepts: chemical change
core	Core concepts: Dynamic Earth		Core concept: Chemical earth		
concept					
	 The geosphere is made of 	 Mass is conserved in all 	That the atmosphere is the	That energy is transferred to	 Acids can react with alkali's
	different minerals.	chemical reactions.	mixture of gases surrounding	and from the surroundings	and metals
	 Rocks are a mixture of 	 That reactions can be 	the earth	during chemical change	• That solutions can be acidic or
Relevant	minerals	classified into different types.	 The hydrosphere is all the 		alkaline.
end points	• The surface of the earth is		water on earth		The acidity / alkalinity of a
	slowly changing as a result of		 How water cycles the earth 		solution is measured by the
	physical and chemical				pH scale
	processes				
	• Earths internal structure.	• The characteristic features of	Why water evaporates and	That energy is transferred	• A salt and water are formed in
	How the main three types of	the following "types" of	clouds form.	from the internal (chemical)	a neutralisation reaction
	rocks are classified	reaction	The hydrosphere includes salt	store to the surroundings in an	• A salt and hydrogen are
Core	How the three main rock	- Combustion	water; fresh water (surface or	exothermic change	formed when a acid reacts
substantive	types are formed	- Oxidation	ground); and water vapour	That energy is transferred	with an alkali
knowledge	Difference between	- displacement	The composition of todays	form the surroundings to the	Pollution can form acid rain
	chemical & physical	- Thermal decomposition	atmosphere	internal (chemical) store of	which reacts with rocks and
	weathering	That mass is conserved	Human activity adds visible	the products during an	damages wildlife
	Earths surface is made of	during thermal	and invisible pollutants into	endothermic change	
	slow moving tectonic plates	decomposition reactions	the atmosphere		
	Earth scientists classify rocks	 Chemists classify chemical 	 That scientific conclusions are 	 Chemical investigation 	Chemical techniques can be
Core	according to their structure.	reactions into different types.	based on experimental	involves careful measurement	used to identify a substance
disciplinar	 The term "mineral" has a 	 Diagrams of the sub- 	evidence that can be	and recording.	or the properties of a mixture.
у	specific meaning in the earth	microscopic can be used to	reproduced by other teams.	To measure a change in	 Diagrams of the sub-
knowledg	sciences community.	model reactions.		temperature you must	microscopic can be used to
е		 Reactions can be 		measure before and after.	model reactions.
		represented in different ways			• Reactions can be represented

Year 8 Long term plan: Biology

Brief overview

Y8 biology starts by exploring the concepts of health and disease in students first exploration of the big question "What keeps organisms healthy?". Other units start students journeys into other big questions. "How organisms grow and reproduce?" is studied in unit's B6. Y8 ends with "Why do organisms depend on each other and their environment?" with students being introduced to a basic understanding of the concept of "interdependence" ahead of a more detailed journey into ecology in Y9. Our short unit on "biochemistry" consciously follows our Y8 units on chemical change enabling students to appreciate the links between disciplines. This looks at a few of the key chemical reaction in cells – drawing students attention to the sub-microscopic world of substances within cells now their chemical schema is more developed.

Unit	B5	B6	B7	B8	B9
Unit title	What keeps us healthy?	How do organisms grow and reproduce?	How do we classify living things?	What is the chemistry of living things?	What are ecosystems
Big question/ core concept	What keeps organisms healthy? Core concepts: Health	How do organisms grow and reproduce? Core concepts: inheritance	Why are living things so diverse Core concept: Evolution	What are living things made of? Core concept: The cellular basis of life	Why do organisms depend on each other and their environment Core concept: interdependence
Relevant end points	 Health is defined as physical and mental well being .Disease can be caused by pathogens, environment, our genome or lifestyles. Only diseases caused by pathogens can be infectious 	 Multicellular organisms primarily grow by cell division All new cells are produced from existing cells dividing Growth & development are part of an organisms life cycle Organism reproduce sexually or asexually 	 Organisms are classified based on observable characteristics and cell structure. Organisms are classified into five kingdoms. Humans are part of the kingdom "animalia" 	 Producers make glucose by photosynthesis. All cells transfer energy by respiration for their life processes 	 Biomass and energy are passed along food webs. All ecosystems depend on producers Decomposers recycle materials in an ecosystem
Core substantive knowledge	 Asthma is a disfunction of our lungs. The percentage of carbohydrate, lipid and protein in a balanced diet Cause of obesity, & deficiency diseases. How fitness contributes to good health. Food is a source of energy (a chemical story 	 Parts of human male and female reproductive systems. Role of the menstrual cycle What fertilisation is. How the body supports foetal development during pregnancy How plants can reproduce sexually or asexually 	 Organisms are classified hierarchically into groups. The distinction between scientific and common names. 	 Word equation for photosynthesis. Word equation for aerobic respiration. Why anaerobic respiration (in humans) is less efficient. Where respiration and photosynthesis happen in a cell 	 Producers make all the biomass in an ecosystem. Many plants rely on animals for pollination or seed dispersal. Population sizes of different organisms are dependent on each other
Core disciplinar y knowledg e	 How to measure resting heart rate and lung volume. How to measure the energy in food by simple calorimetry Biologists communicate their research to improve human health. 	 Biology is studied as at different levels including the organism, interactions between organisms and organ systems 	 Biologists use systems to classify all organisms. Use of keys in classification A continuous cycle of collecting and analysing data constantly improves classification systems 	 Biology is studied as at different levels including the chemistry of living things 	 Biology is studied as at different levels including how different organisms interact in an ecosystem Simple means of investigating seed dispersal

Long term plan: Year 8 breakdown by lesson

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
LO Introduction to choose (and	112 Mactory and foodback	Midweer OCL assessment	111 How door water sugle the	1.4 Why is grude ail found in	LE Llouvis the male reproductive
LU Introduction to space (and	LIZ Mastery and reedback	(ontional)	LII How does water cycle the	L4 Why is crude oil found in	LS How is the male reproductive
(ontional)	P06 Making images	(optional)	112 FOTT What are the atmosphere	15 FOTT How is our planet	L6 How doos a baby dovelop?
(optional)	11 How do nin hole cameras work?	15 What hannens at plate	and hydrosphere?	changing	17 How do plants reproduce?
P04 Where are we in space	12 Making nin hole cameras	boundaries (optional)	113 Mastery and feedback	L6 Mastery and feedback	18 What is in a seed (Seed and
11 What are days months and	(ontional)	16 How are igneous rocks formed?		Lo Mustery and recuback	flower dissection) (optional)
vears?	13 What are reflected images?	17 How are rocks transformed?	C8 How is energy transferred in	B5 What keeps us healthy?	19 FOTT growth and reproduction
12. What is gravity?	14 What is the "law" of reflection?		chemical reactions?	11 What is "good health"?	110 Mastery and feedback
L3 How does Gravity effect the solar	L5 What is "refraction"?	C6 What types of chemical	L1 Energy stores and transfers	L2 What causes disease?	
system?	L6 Investigating refraction	reaction are there?	(optional recap)	L3 What causes asthma?	B7 How do we classify living
L4 Why does the night sky change?	(optional)	L1 What are chemical reactions	L2 What is an exothermic reaction?	L4 What causes Covid-19?	things
(optional)	L7 What are lenses?	(optional)	L3 How do we measure an	(optional)	L1 How do biologists classify
L5 Where are we in space?	L8 How does the eye work?	L2 What is combustion?	exothermic change?	L5 How do we get the nutrients	organisms
L6 Why do we get seasons?	(optional)	L3 What are oxidation reactions?	L4 What is an endothermic change?	we need?	L2 Why biologists classify
L7 Investigating why it is hotter in	L9 EOTT Making images	L4 Why does oxidation increase	L5 Measuring an endothermic	L6 What is malnutrition?	organisms into kingdoms?
summer. (optional)	IL0 Mastery and feedback	mass? (optional)	change (optional)	L7 How much energy is in food?	L3 Where do humans fit in the
L8 EOTT		L5 What is a displacement		L8 Investigating energy in food	classification system?
L9 Mastery and feedback	P07 More on forces	reaction?	C9 How do acids react?	L9 What is fitness?	
	L1 What causes weight?	L6 Why does displacement not	L1 How can we identify acidic and	L10 Investigating fitness	B8 What is the chemistry of living
P05 Moving by force	L2 How do we calculate weight?	effect mass? (optional)	alkaline solutions?	(optional)	things?
L1 What is speed?	L3 How does a bridge supports an	L7 What is thermal	L2 What is the pH scale?	L11 EOTT: What keeps us	L1 How do producers make
L2. How do we describe speed?	objects weight?	decomposition?	L3 What are neutralisation	healthy	glucose?
(instantaneous vs average speed)	L4 Investigating bridges (optional)	L8 How does thermal	reactions?	L12 Feedback and mastery	L2 Where does photosynthesis
(optional)	L5 How does a floor support a	decomposition effect mass?	L4 How can we show an acid is		happen in a leaf? (optional)
L3 What do D-T graphs tell us?	weight?	L9 EOTT What types of chemical	neutralised (practical) (optional)	B6 How do organisms grown	L3 How do cells transfer energy?
L4 How does force effect motion?	L6 How does force effect a spring?	reaction are there?	L5 How is acid rain formed?	and reproduce?	L4 What reactions take place in
L5 What is acceleration?	L7 How does a wire support an	L10 Mastery and feedback	L6 Investigation: what rocks does	L1 How do (multicellular)	plant cells?
L6 What causes drag?	objects weight? (optional)		acid rain react with? (optional)	organisms grow?	L5 Can our cells respire without
L7 How do parachutes work?	L8 How do levers work?	C7 What are the atmosphere and	L7 How do acids react with metals?	L2 What are life cycles?	oxygen?
L8 Investigating drag in different	L9 Investigating moments of a	hydrosphere?	L8 EOTT How do acids react	L3 How do organisms develop	
fluids (Pt 1)	force	L1 What gases make up our	L9 Feedback and mastery	and reproduce?	End of year OCL assessment
L9 Investigating drag in different	L10 EOTT More on forces	atmosphere?		L4 How does the female	P0.14/6-1.12
110105 (Pt 2)	LIT Mastery and reedback	LZ HOW are we polluting our	L1 Llow door rain woother racks?	reproductive system work?	by what is an ecosystem?
LIU Relative motion	CEA How is our planat shanging?	aunosphere?	L1 now does rain weather rocks?		L1 what are food webs?
LTT MOVING BY FOICE EOLI	1.1 How do we classify rocks?	L5 Why does water evaporate	weathering and erosion?		nonulations?
	12 What are minerals?	faster on a hot day? (ontional)	13 How are sedimentary rocks		13 Why does an ecosystem
	13 What is the geosphere made of?	17 What are clouds?	formed?		depend on producers?
	14 How is the surface of the earth	18 What is the hydrosphere?	lonneu.		14 Why are pollinators so
	changing?	L9 How do rocks store ground			important?
		water (investigation) (optional)			L5 Why are decomposers
		L10 How do humans contaminate			important?
		ground water? (optional)			L6 Field work Pt1 (optional)
					L7 Field work pt2 (optional)
					(5 core lessons)

Year 9 Long term plan

Biology: The wondrous diversity of life and its human stewards	Our Y9 curriculum provides a bridge between KS4 and KS3. We start with returning to the big question "what are living things made of?" with a substantial unit building up students concept of "cells" first introduced in topic B1. We then look deeper into the idea of "infection" and develop the concept of "pathogens" in answer to the question "what keeps organisms healthy?" with a conscious decision to focus on both plants and animals. This unit includes work on sexual health and contraception The two most significant units of Y9 biology are topics B13 and B14 looking in detail at the ideas of evolution by natural selection and students impact on biodiversity. We aim for students to have a rounded understanding of the scientistic answer to why life is so diverse and a deep understanding of how various human activates threaten fragile ecosystems. B10: the cellular basis of life B11: Health and infectious disease B12: Biodiversity and human impact B13: Variation through evolution
Chemistry : The periodic table, rates and structure of the atom.	 Year 9 chemistry returns to our three core "big questions" of chemistry and introduces students to how chemical knowledge is represented on the periodic table and a more complex model of the atom. Year 9 starts by introducing the periodic table by looking at the meaning of the term periodic and the patterns in physical and chemical properties down the groups. Our unit on rates of reaction builds upon prior knowledge "What is chemical change?" to develop a meaningful chemical definition of "rate". Students are introduced to the Bohr model of the atom for the first time and use it to explain the trends in the periodic properties of the elements. Year 9 also includes a practical unit returning to the separation techniques introduced in year 7 to develop a more rigorous procedural knowledge of these techniques. C10: Substances and mixtures C11: The periodic table C12: Rates of reaction C13: Structure of the atom
Physics: Developing ideas of electricity and magnetism	We intentionally wait to begin the question "What are electricity and magnetism?" until Y9 because of the cognitive demands of both the practical work required and the abstract modelling of electricity. A substantial period of time is spent in year 9 embedding the practical skills of using circuits and qualitative relationships between the concepts of current, voltage, resistance and energy. Y9 also sees students build on their understanding of the particle movement of water and sound waves to look at the graphical representations of waves. Y9 finishes with a unit building students understanding of "density" and pressure. Topic 13 is one of our most challenging topics pushing students towards a complicated application of balanced and unbalanced forces to make sense of pressure in fluids and convection. P08: Electricity P09: Waves P10: More on Electricity P11: Magnetism P12: Floating and sinking

Physics: Energy and energy transferred. Y10 physics is linked together by the big idea of energy which underpins several of our key questions. Across all topics students are supported in recognising the gualitative nature of physics. That we can use mathematical relationships between (sometimes abstract) concepts to make accurate predictions about phenomena. Students investigate this further through a series of required practical's. All physics topics in year 10 are in essence applications of the big idea of "energy transfers" and that modelling them mathematically enables us to make accurate predictions. This supports students understanding of role of mathematical modelling which is central to how knowledge is developed within physics. Students also cover a short unit developing their understanding of the concept of the particle model and atomic structure in answer to "What is matter?" The final units being placed at the end of the sequence because of their overlap with big questions within chemistry. P13: Energy P14: Electricity P15: Domestic uses of electricity P16: Particle model P17: Structure of the atom and radiation bonding. Chemistry: Chemica The aim of Y10 is for students to make a qualitative leap in their answers to the first two big questions of chemistry. We start by bringing together several Y9 topics and introducing a simplified electrostatic model of the atom. This model of the atom is used throughout topic C14 to link the different types of chemical bonding to one central underlying concept (electrostatic attraction). This encourages students to develop a more flexible schema around chemical structure to support further progression. Students then return to more complex examples of chemical change supported by their more advanced understanding of the nature of chemical bonding. C14: Chemical bonding **C15**: Chemical Changes C16: Qualitative chemistry C17: Rates of reaction and organisms **Biology:** Systems within cells KS4 biology starts by developing a cellular basis for students concept of "growth" before returning to ways substances are transferred across the cell membrane (last dealt within detail during Y7). Our start to KS4 biology is linked together by a focus on "systems" within organisms leading students to an understanding of how different processes within organisms are themselves interdependent. B15 is a vast unit which starts with looking at enzyme action and biological molecules (sub-microscopic - biochemistry) and digestion before linking together ideas of biological organisation (what are living things made of?) with health and disease (how do organisms stay heathy) at the level of organs and organ systems. The year finishes with a look at the development of drugs and vaccinations before deepening students knowledge of the biochemistry introduced in Y9. B14: Cell structure, division and transport B15: Systems and organisation B16: Infection and disease **B17:** Bioenergetics

Year 11 Long term plan

Chemistry Chemistry n a	Y11 Chemistry comprises a series of short units which picks up and develops ideas covered earlier in the course. The units, covering C2 chemistry are linked thematically by the application of chemistry to societies' interaction with our planet and its resources C22 explores organic chemistry for the first time – picking up from work in Year 8 looking at how fossil fuels are created. C24 and C25 similarly pick up the story of how chemistry affects the Earth from topics C7 and C11 in Year eight. C18: Organic chemistry C19: Chemical analysis C20: Earths atmosphere C21: Using the Earth's resources
Physics: Why objects move	Our final year of physics returns to one of the most central concepts in physics – force. Both unit P19 & 20 give a more developed, and quantitative, treatment of the ideas of force and motion developed in years seven and eight. Introducing acceleration equations, velocity-time graphs and the conservation of momentum. Units P21 builds on the Year 9 unit "waves" by looking at the electromagnetic spectrum and wave equations. Physics finishes by returning to the idea of electromagnetism introduced in P12 and exploring the motor effect. P18: Forces and their effects P19: Force and Motion P20: Waves P21: electromagnetism
Biology: Systems within cells and	Biology starts with the looking briefly at the nervous system before exploring the uses of hormones within the human body. B20 develops a model of inheritance and relates it back to the ideas of evolution first explored in detail in unit 14. Our biology story closes with a final unit looking at ecology and the human threat to biodiversity that was covered in some depth in unit B13. B18: controlling our bodies B19: From Inheritance to evolution B20: ecology